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2(p) - see (2.15)
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INTRODJCTION

The problem of panel flutter has been actively studied theo-
retically and experimentally by many authors over the past two
decades. For a complete bibliography of work up to 1968, one
gshould consult Volume II of the extenslve design criteria effort
of C. E. Lemley (Ref. 1). A more recent review article by
Dowell (Ref. 2) covers the perlod after 1968 to the present time.

Many formulations of the panel Tflutter problem have appeared
in the literature with varying levels of complexity. Most of
these studles have dwelled on the linear stablllity problem.
Inviscld aercdynamlc theory was used, elther the exact inviscid
theory following Garrick and Rubinow (Ref. 3) or the static and
quasl-steady approximatlon thereof. Only 1in recent years has the
importance of the boundary layer been realized and investigated
in a rational manner. The most definitive work in this area is
the experimental effort of Muhlstein,etalJRefs. 4,5). A com-
pletely satisfactory theory 1s still lacklng but the recent work
of Dowell (Ref. 6) is a step toward this goal.

The need for a nonlinear formulation and analysis of panel
flutter became evident when it was realized that panel flutter is
not always destructive. If the stress level during the post-
flutter limit cycle osclllation is sufficiently low, many cycles
of stress revarsal can be tolerated without failure. In one-shot
misslle applications, it may be too severe a welght penalty to
demand complete absence of panel flutter. The problem of esti-
mating the post-flutter stress level then comes to the fore as a
significant design problem.

The problem of nonllnear flutter of flat panels was analyzed
by Bolotin (Ref. 7) who used the Galerkin method in the spatial
variables and the method of Krylov and Bogoliubov in the time
variable. Olson and Fung (Ref. 8) applied the same method to the
cylindrical shell. The agssumptlons of weak nonlinearity, small
damping and weakly-coupled modes are difficult to Justify,



however, in the application of this method to panel flutter.

To avold these limitations, Dowell (Refs. 9,10) has attacked the
problem with the Galerkin method in the spatlal varlable and
direct numerical integration of the nonlinear ordinary differen-
tial equations in time. Thils is the most complete attack on the
problem to date. The principal disadvantage of Dowell's approach
1s the amount of computer time required. A further work of
interest in this area is due to Eastep (Ref. 11) who considers
the coupled response to a turbulent boundary layer and the non-
linear l1imit cycle motion.

Another approach that seeks to obtaln an estimate of the
Stresses in the panel is due to Zeydel (Ref. 12). The philosophy
underlying his approach is that a detailed description of the
stress distribution in the panel is not really needed, but rather
an estimate of the peak stress. The further supposition is made
that thils estimate can be obtained by averaglng the nonlinear mem-
brane stresses to obtain an equivalent linear problem. The method
proposed by Zeydel is presented in detail in the present report,
together with some example numerical calculations.

Different methods have been employed to attack various form-
ulations of the linear flutter problem. The most common approach
1s the Galerkin method, in particular, when the full linearized
aerodynamic theory is incorporated. Exact methods have been used
successfully when either the static or quasi-steady aerodynamic
theory is used; e.g., see Refs. 13, 14, 15. The Galerkin method
is a very powerful tool for solving the exact problem when the
length-to-width ratio is small, of order unity. For such geometry,
the flutter mode shape can be approximated closely with only a
few assumed modes s0 that the resulting flutter matrix is of
tractable size. However, when the length-to-width ratio becomes
large, the number of half waves in the chordwise flutter mode
becomes large and also the mode shape has an exponential growth
near the trailing edge. To resolve this type of flutter mode
into Fourier components, one must use a large number of assumed



modées and, consesquently, must be able to handle a very large
flutter matrix to obtain convergence. The result is that the
computational effort grows out of all proportion to the magnitude
of the problem.

In Refs. 16 and 17, a new method for solving an exact formu-
lation of the problem was introduced. The problem treated is
that of an infinite spanwise array of identical panels. Exact
inviscid aerodynamilc theory 1s employed. The technique is to
reduce the full problem to an ordinary differential equation in
the streamwlse variable. The latter problem 1is solved by Laplace
transforms in a way suggested by Goland and Luke (Ref. 18) for
investigating the problem of membrane flutter. The convergence
difficultles assoclated with the Galerkin method are avoided, 1n
that the mode shape and its derivatlves are obtalned quite nat-
urally 1ln the process of solution. The present effort is an
extension of the work initiated by the late Dr. E. F. E. Zeydel
in Refs. 16 and 17 and, in fact, supercedes the work in Ref. 17.

We remark, in conclusion, that many of the results presented
herein may appear to the experienced worker in the field to be a
restatement of known facts accumulated over two decades of
research on the problem. This is in part true. The only Jjusti-
fication offered is that most of the accumulated knowledge on the
subject that the author is aware of can be derived and explained
in a unified way at a very fundamental level wlth the exact method
used herein. If this unification of our knowledge results in
even a small advancement of the state of the art, then the effort
has been worthwhile.



I. PROBLEM FORMULATION

A. Eqguations of Motion and Boundary Conditions

Referring to Fig. 1 we consider an infinite spanwise array
of identical flat rectangular panels of unit width and length s
in a supersonic mainstream of velocity U . A dimensional panel
width b will be carried in the key dimensionless parameters.
The panel material is assumed to be homogeneous and of uniform
thickness <t , but may be orthotropic, Also, we include the
effects of viscous damping, structural damping and an elastic
foundation in the analysis.

The nonlinear equation of motion and stress definitions for
the panel array is (Ref. 7):

D N 2 N
x b Ny 3w O W _ 5 'xy 22w
;? VW -5 5_5 - BX 5y2 2b X0y
+ K bw + U %% + oy TU2 522 =p (1.1)
= ot
where I L N
4L 3 ) o)
v o= + 29, —m—s + 8 (1.2)
g;E Xy Bxdayz yy S;E
(1 +ig) EDP [ou | 1 dw\<
=N X | W Qv
Ny 1\‘xo LA = ey 13x T 2 §§> vy -< > ]
(1 + 1g) E br 2 (
N =N yiov . lfow du @)z}
y Yo T Vily L3y 3 oy, + Vi3x T 2\5x
- Qv
ny = nyo + bey< 5—- (1.3)
x h 2T - v v \s 27" Yx =
X'y “ox oy
N B 2 2
6 =X . I_"¥ oW 4y OU 1.4
y TR TE2T S 2T Y 52 (1.4)
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and

b D
Q = ——-X-x » Q = _X
Xy Dx vy DX
Exh3
D. = (1 + ig)D D, = ~ (1.5)
X X ? X, 12(1 vxv&)

In (1.1) the unit of time is b/U .

Structural damping is incorporated in two places in the
foregoing equations, First in the complex bending modulus DX
and second in the nonlinear stress terms (1.3). We point out
that structural damping is not included in the applied membrane
stresses Nx s N s N . The elastic foundation and viscous

o Yo Vo
dw

damping are included via the terms K,bw and +Ub 5t in (1.1).
Orthotropicity is incorporated through the different elastic
modulii in the x and y directions. The total stresses in the
panel are given by (1.4) and are the sum of three parts: (1) the
applied membrane stresses, (2) the nonlinear membrane stresses
that develop with large amplitude mction and (3) the bending
stresses.,

The boundary conditions needed to complete the formulation
of the problem are the following. The midplane displacements
u,v and normal deflection w are assumed to be zero on the
leading and trailing edge and on each of the stringers. The
leading and trailing edges may be pinned or clamped and the
longitudinal stringers may offer a partial torsional restraint
into the panel. Thus, we have

e
Il
<
Il
=
il
o
=
o3
®
o}
b
|
O
-
ez}

82w

5—5 =0 , X =0,s pinned
b4

oW _ 0] x = 0,8 clamped

3x s = 0, P




Stringers

€

__Q(ng _ 22w ) -,

07" | y=n* 9" |y=n3 ly=n

for n= .., -2, =1, 0, 1, 2 ... (1.6)
where €a and ep vary between zero and unity and give the
degree of restraint of the stringers; e.g., if €. =0 and
ep = 1 the stringer has no restraint and if €, = 1, ep =0,

it is completely restrained,

B. Stress Estimation Procedure

We note that ocur basic set of egquations and boundary
conditions is incomplete. Additional equilibrium equations and
compatibility equations for the midplane stresses are needed be-
fore a complete solution can be attempted. The omission is de-
liberate, however, since we propose to handle the nonlinear
membrane stresses by an averaging procedure that does not require
explicit use of these equilibrium equations.

The averaging technique for estimating the stresses during
panel flutter was suggested bty Zeydel (Ref. 12) and goes as
follows. Flutter is supposed to occur initially in the linear
regime. After the initial onset of flutter the amplitude grows
to some value that is limited by the nonlinear membrane stresses.
The key assumption is that the nonlinear limit cycle motion is
approximately governed by an equation of the form (1.1), but with
the membrane stresses replaced by appropriate average values. The
main consequence of the averaging is that the problem becomes
linear. Here we average N

x 3 Ny and ny over the area of a
single panel and one period of oscillation. We define
5 1 T
R
N = ETT\/‘dxk/\dyL/‘dt - N (1.7)
0 o) 0



where N is any stress component. Substituting NX s Ny and
ny in turn into (1.7) and using the boundary conditions on
u,v we get
N, = Nxo + (1 + ig) N,
N =N + (1 + i N
y = Yy, ( ig) ¥y
N = N .
xy Xy, (1.8)
where
E b L o7 2 2
NX = * E—T— f d)(f dyf dt (Wx + Vywy >
1 2(1 - vay 5 S S
E Db 3 + ?
1 2 2
N = ¥ . ——-L/‘dxh/\dy\/ dt (w + v W > (1.9)
- sT X X
Y1 2(1 ViVy 5 5 S y

The procedure for calculating flutter and estimating the limit
cycle stresses is thus reduced to the following steps:

N
N in

1. Replace N_ , Ny s N by their averages Nx s Ny > Nyy

x Xy
(1.1) and 1n (1.4).
2. Assume values of le and Ny and compute a flutter point
1
and mode shsape.

3. Substitute the mode shape into either of (1.9) to determine
the unknown amplitude.

4, Estimate the stress by direct calculation with (1.4).



C. Aerodynamic Forces

In the present study we use exact inviscid linearized aero-
dynamic forces, except where comparisons are made with static
theory. If ¢ 1is the perturbation velocity potential, then the

problem we must solve to obtain the pressure p 1s the following:

2 2 2 2 2
52 d 2 _9 2 _ 9 2 + 2M2 ax =+ M2 %% _ o
dx oy oz ot
BZ = M° - 1
gg = O¥W ow
Z) yeo 3x @ Jot
Outgoing waves at infinity (1.10)
p = - p U <§% + %%) ) (1.11)
Z=

The solution of the aerodynamic problem is well known for
the case of simple harmonic motion and a panel array (see, e.g.,
Ref. 17). Rather than adopt the known explicit solution for p
at thls point, however, we shall leave the problem in the form
of (1.10) and (1.11). The reason is that we want to illustrate
how the flutter problem can be formulated and solved by Laplace
transforms with only a knowledge of the transform of p .

D. Reduction of the Flutter Problem to an
Ordinary Differential Equation

To solve the flutter problem by the Zeydel method, which uses
the Laplace transform,we first reduce the problem to the solution

of an ordinary differential equation in x . We assume the
deflection and veloclty potential to be of the form

Weg(y) Re {f(x)eikt}

g (y) Re {@(x,z)eikt} (1.12)

w

¢



where

k = %E reduced frequency based on panel width
g(y) = spanwise mode shape
W= amplitude in panel thicknesses (1.13)

We choose the spanwise mode shape a priori and carry cut a
single mode Galerkin analysis in the spanwise direction. The
mode shape we choose is the beam vibratlion mode that satisfies
the boundary condition at the stringers (see (1.6)). Thus g(y)
1ls a solution of the following problem:

M
d—%-aﬁg=o 0<y<1
dy
g(0) = g(1) =0
€.g7(0) - epb'YO) =0
€.g’(1) + epg“(l) = 0 (1.14)

and

i
gy +n) = - (- )" g(y)  n=...-2, -1, 0, 12,0,

0<y<1 (1.15)

where n is the spanwise mode number or number of half waves in
a single panel width. The periodic extension of g(y) , (1.15),
is such that the panels are alternately in and out of phase (see
Fig. 1). The solution of (1.14) for arbitrary stringer restrainte
ep and €. is given in Appendix A, together with appropriate
integrals of g(y) that are needed in the subsequent discussion.

Next we substitute (1.12) into the equations of motion and
aerodynamic problem, multiply by g(y) and integrate over the
infinite span of the panel to obtain the following formulation
of the flutter and stress estimation problem:

10



L 2
a'ft a-f af : =
Eﬂ: - A —dx——g + C T + Bf + SP(X) = 0 (1.16)
where
Tx
o
A = 202\Qxy + -l—ﬁé + I‘Xl
i Cor,  + b3(K b + iyUk)/D, - RK®
B=p; Q_ +Cor+ Yo o
vy 2°yy 1 + ig
2C,r
c =_+%o
1+ ig
S
S = =2
1l + ig
R = D s So = D
X0 Xo
e 2
N, b N, b
r, = 0o , r =0
o on Yo on
2 2
Ny b
_ leb _ v -
r - s r - ( L) 7)
X3 D Y1 D,
e o
n
C, =~ d—ar%l)- g(y) dy (See Appendix A) (1.18)
o ¥
Boundary Conditions
£(0) = £(s) = O
£°(0) = £s) =0 clamped ends
£70) =£%s) =0 pinned ends (1.19)
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Aerodynamic Problenm

2 \2 ~
2 1 agl
B 5_‘%_0_%_1_21“ g%+<02_ k2M2>¢=O
ox dz
foloF _ of
3], " 3w e

P(x) = - <§% + ik¢>~=o (1.20)

Mode Shape and Maximum Stress Estimation

w= TWg(y) Re {?(x)eikﬁ}

1
r. s /2

. 1
3\/\<|f'(x)|2 - Cgvylf(x)|2>dx
0

. fs(vxu'f? - cyle]?)ax
o Q

Y1 _
1

W=

e e

“x Ve 2
[<|f'| ML )dx

l2o, (1 - V¥y
s, = nax ) =r_ +r
x E_~t Xo aat
b4
' Kt}
+ 6« W- Max ';g(y)Re(f”eikt) + vxg”(y)Re(fei )/
o<y<1t
0Kx<s
0<t< T
k
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” ‘\
+ 6+ W .Max {g"(y)Re(feikt) + vyg(y)Re(f“éikty

0<y<1 )
O<Kx<s
T
O<t<E
(1.21)
We remark that the third formula of Eq, (1.21) is a compati-~
bility condition on the initial assumption for ry and rx .
1 1

Remarks on Midplane Shear Stress

The term C %% in (1.16) contains the effect of an applied
midplane shear stress in the array of panels., It is most
Interesting since it is exactly the same form as aerodynamic
stiffness. Hence, by applying the shear stress of appropriate
sign, flutter could conceivably be induced or eliminated.

Although the possibility of a flutter control mechanism by
gpplied shear is interesting, a closer inspection of the problem
reveals that it is not possible within the framework of the
present theory. The integral Cl that appears in the definition
of the shear term is identically zero (see Appendix A). 1In the
subsequent discussion we shall omit the shear term.

13



II. EXACT SOLUTION

A. The Zeydel Method

Here we show in detail how the flutfter problem is solved by
the Zeydel method. The method was developed by Zeydel (Refs. 16,
17) to circumvent some of the difficulties inherent in the Ritz-~
Galerkin procedure when the panel length-to-width ratio becomes
large. It yields directly the flutter boundary and mode shapes
that are essential for stress estimation, without reference to
assumed modes. Some of the subsequent detail was given initially
in Ref. 17 and is inclvded here for completeness.

Introduce the Laplace transform in the chordwise direction:
(o]
F(p) =\/‘e-px f£(x) dx
0

Y+ico

£(x) = o | % E(p) op (2.1)
Y=1eo

where <y 1is to the right of all singularities of I(p) . Now
take the Laplace transform of (1.16) to obtain

(pLL - Ap? 4+ B) f + SP(p) = (p2 - A) £l +pfg + £07 (2.2)

where fé s fé’ , fé"
leading edge., Note that the boundary condition fo = 0 has been
used and that either fé or fg' ig zero when the distinction

of pinned or clamped leading edge is made. For the moment we
shall carry both terms in (2.2).

are the derivatives of f(x) at the

The Laplace transform of the pressure P(p) is evaluated
as follows. We take the Laplace transform of the complete aero-
dynamic problem (1.20). Thus

P
%—% - (52p2 + 29kM%p - K°M° + 02> 3 =0
4
di = (p + ik)f
Z=
B(o) = (0 + 1003] _, (2.3)

14



After solving for ¢ we obtain

Plp) - — R FIDT 5
B[(p + iKM)2 + P2}
o3
g = XM , r=(x%+-2 2,4
52 < BQ> ( )

We point out that the actual pressure mode shape P(x) is not
needed to solve the problem with the Zeydel method.

Now substitute (2.4) into (2.2) and solve for f(p) . We

get 2 -~ Cdd
_ (p© - A)E. +pfY+ ¢
F(p) = ————F—2—2 (2.5)
D™ (p)
where
~+ 4 o .8 (p + 1k)?
D'(p) =p - Ap + B+ 5T " ot (2.6)
[(p + iKM)© + I J
Define the function
+1c
1 T/} eP¥ 3 >
Y-ie

so that the inverse transform of (2.5) can be expressed in the
form

Il

£(x) = (Fx) - AF(x))f] + F(x)£]"" pinned

L4

o clamped (2.8)

F'(x)f;' + F(x)f

Now apply the boundary conditions at the trailing edge (x = s) .
The results can be summarized as follows:

15



For Pinned Edges

;—F (s) - AF(s)  F(s)]| /£l
=0 (2.9)
F(s) - AF”" (s) Fs) £

For fixed s this system is interpreted as a pair of equations
for fé and fgv . To obtain a nontrivial solution it is
necessary that the determinant of the coefficient matrix vanish,
or

D = F(s)F”“(s) - F""%(s) = 0 (2.10)

The last result is the flutter condition within the present

framework and must be solved to obtain the flutter eigenvalues.

S, e

For each eigenvalue, we then solve (2.9) for the ratio fc;/fO

and substitute into (2.8) to obtain the flutter mode shape,

FAx) _ F(x)
Fs) F(s)

f(x) = (2.11)

For Clamped Edges

The argument proceeds in exactly the same way for clamped
edges., The counterpart of the system (2.9) is

F(s) F(s) 'fg‘\
=0 (2.12)
F’(s) F'(s) f'(;'

The flutter condition and mode shape are given respectively by

D = F(s)F™(s) - F'2(s) =0
£(x) = g_,j(_:_)l - %is% (2.13)

16



The procedure for calculating flutter boundaries and mode
shapes with the Zeydel method is the following:

1. PFix all but two of the parameters entering into the problem.
We shall see that the reduced frequency k and the length-
to-width wratio s are convenient free parameters;

2. BSearch the plane of free parameters for zeros (flutter points)
of the complex determinant D(k,s);

3. Evaluate the normalized mode shape by direct calculation at
the flutter points.

L, Use the flutter point and normalized mode shape to estimate
the maximum stress with (1.21).

B. Evaluation of the Characteristic Function F(x)

The success of the Zeydel method depends upon the evaluation
of the characteristic function F(x) and its derivatives (see
(2.7)). Here we show a procedure that has been used successfully.

We first extend the definition of D¥(p) such that

5t (p) = g(p) * 4RL (2.14)
h2(p)
where
g(p) = pLL - 8p° + B
o(p) =% (0 +1K)°
n(p) = (p + ikM)? + 2 (2.15)
Define the quantity
A(p) = h(p) 57 ()5 (p) (2.16)

and observe that it is a tenth degree polynomial in p with
roots Py » 0= 1,2,,..,10 . These roots are, in general, distinct
so that

17



10

1 Z 1
Ap) T L FT)(® - by
n=1
2%(p) = S5a(e) (2.17)

Now multiply the numerator and denominator in (2.7) by
h(p)D7(p) and write F(x) in the form

Y+ioo
1 [ eP*p
200 = g [ SRR o
y-im
Yt+ieo
B px h(pl)4(p) . dp
] e . 2.18
me_{m ae)  w72(p) (2.18)

Substitute (2.17) into (2.18) and evaluate each term separately.
The result can be expressed concisely in the following form:

10
P(x) = ) Fo(x) (2.19)
n=1
where D
F (x) =e nx(An - B G (x))
X - .
G (x) =fe Potil)e J (T¢)at
0
h(p,)e(p,) h(p,)£(p,)
An 7 "“‘n‘—n‘A'(pn) ; B, = 5] Pnn (2.20)

and J_(z) 1s the Bessel functlon of zero order.

The foregoing procedure can be used to evaluate F(x)
numerically (see Appendix B). It remains to be shown how the
derivatives of F(x) can be evaluated efficiently and accurately.

18



The scheme i1s based on the following result:

m
\_/H-A%E)- dp = Q ’ m = 1,2,...,8 (2.21)
C

where C 1is any closed curve that contains all of the poles of
the integrand. The result 1s easily proved by reversing the
path of integration and noting that there is no residue at in-
finity. It follows at once from (2,17) and (2.21) that

10 p
P
Z ——= = 0 (2.22)
2" (pp)
n=1
and so
10
Ap™ =0 m=0,1,2
npn - ) LR ]
n=1
10
Z Bnp‘l:l1 =0 , m=0,1,2,3,4 (2.23)
n=1

With the foregoing results it is readily verified that F(x) and
its first four derivatives can be expressed in the convenient form
10

(™) (x) =Z oy F () 5 m=0,1,2,3,4 (2.24)
n=1

Finally, we substitute the last result into the flutter
condition and mode shape (2.10), (2.11) and (2.13) to obtain:

For Pinned Edges

D(k, s)—-Z Z F (s)F (s)( -p> =0

n=1 m=n-+l
i? pnm+2Fn(x) EmeF (x)
e () = n=-‘6 - ol , m = 0,1,2
Yok Yae
n=1 n=1 (2-25)

19



For Clamped Edges

10
D(k,s) ==§i ZJ Fn(s)Fm(s)(pn - pm)2 =0

n=1 m=n+1
10 10
m+l oy
p, F,(x) B F (%)
f(m)(x) = n;% - nfé s mo= 0,1,2 (2.26)
0 O
) onFn(s) ) Fp(e)
n=1 n=1

The entire problem of evaluating flutter boundaries, mode shapes
and their derivatives has been reduced to the evaluation of ten
functions Fn(x) that correspond to the ten roots of the
characteristic polynomial. A detailed numerical procedure is
given in Appendix B,

C. Discussion of the Root Plane

The typical locationsof the ten roots of the characteristic
polynomial are shown in the complex p-plane in Fig. 2, together
with the two branch points, pA,B==—iKM Tir » of the transformed
aerodynamic pressure (see (2.4)). Here we discuss the physical
significance of these singularities and also how they move in the
complex p-plane with a change of reduced frequency, mass ratio
parameter and other parameters., We shall see that the very
essence of panel flutter is contained in the singularities of the

root plane.

Some general properties

If one introduces the transformation p = ix in A(p) ,
(2.16), the coefficients of the resulting polynomial in X are
real providing that structural and viscous damping are zero.
Even for small values of damping,the XA ©roots are nearly
conjugate pairs. This means that root pairs in the p-plane are
nearly conjugate about the imaginary axis. From Fig. 2 we see
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FIGURE 2b.
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that there are four such pairs with two additional roots (numbered
5 and 10) that are nearly pure imaginary except for small real
shifts due to damping. The two imaginary roots always lie close
to the branch cut between the two branch points A and B.

From the form of (2.16),we conclude that each of the ten
roots 1s either a root of 5t or D~. The number of roots of
each factor d?pends upon the choice of branch cut used to make
the factor h?%(p) single valued. In the following discussion,
we choose the branch cut to be the straight line between the brancl

points and by - This choice assigns five roots to each

Pa
factor. In Fig, 2a the + or - sign near each root indicates
which one is a zero of DT or D~ . In our subsequent dis-

cussion,we concentrate on the interpretation of the roots of 5t .

The structural roots of DT

When the aerodynamic term is dropped in (2.6L then 5+ has
four roots (zeroes of the polynomial g(p)) that lie on the real
and ilmaginary axes (for g = O), as shown in Fig. 2b., This is the
limiting configuration of the first four roots of bt as the
dynamic pressure tends to zero. We shall refer to roots 1,2,3,4
as the structural roots of D' .

Initial membrane stresses have a significant effect on the
structural roots. In particular, a chordwise membrane tensile
stress, Ty o shifts the roots 1 and 3 out on the real axis
whereas a cgmpressive stress shifts them toward the origin
(Fig. 2b). 1In the limit of very large tensile membrane stress,
these two roots tend to plus and minus infinity, respectively.
The roots 2 and 4 are shifted in exactly the opposite sense of
roots 1 and 3,

Aerodynamic forces cause the structural roots to shift as
shown in Fig. 2c. The roots 1 and 3 shift to the left and acquire
small imaginary parts, whereas the roots 2 and 4 shift to the
right. The principal contribution to this root shift is the
aerodynamic stiffness. Damping (aerodynamic, structural or
viscous) has a very small effect on root location. However, we
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shall see that the small damping shifts have a profound effect
on the traveling-wave type of flutter.

It is important to understand the structural root shifts as
a function of reduced frequency Lk and mass ratio parameter
po= pST/pw . PFor fixed p sufficiently small, the roots shift
with k as follows (see Fig. 3a). For small k (of the order
of a few tenths), the roots Py, s Py are to the right of py .
For increasing k , Ps and Py shift to the left of Py and
their imaginary parts increase, as shown in Fig. 3a. For some
larger critical value of yu , the roots Ps and p, can never
get to the right of P4 for any value of k . This critical
value of 1 we shall call Mg . ® We shall see that He w.
is the largest value of pu for which standing-wave type of
flutter can occur in a very long panel. Furthermore, standing-
wave flutter only occurs when k is such that the real parts of
the roots Py > Po and p), are close together. The degree of
proximity depends upon the length-to-width ratio. The foregoing
phenomena is not affected appreciably by small amounts of damping
(aerodynamic, structural or viscous).

Applied membrane stresses have a significant effect on the
root shifts due to aerodynamic stiffness. A tensile stress shifts
the root Py to the right on the real axis so that more aero-
dynamic stiffness (higher dynamic pressure) 1s needed to cause
standing-wave flutter, In the limit of a very large tensile
stress (pure membrane panel), Pq is shifted to infinity so that
standing-wave flutter cannot occur at all, Only flutter of the
traveling-wave type can occur in the membrane. On the other hand,
a compressive stress shifts 12 toward the origin so that less
aerodynamic stiffness is needed for flutter.

For larger values of k (order unity or greater) and fixed
o> Mg v, 2 we have the following situation., With increasing k,
the roots Ps and Py tend to the imaginary axis., The imaginary
parts of Ps and Py get larger as do the branch points Py and
Py - For each  ‘there is,in general,a finite k-band where
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the Re Py > Re Dy Near each end of the k-band, this in-~
equality reverses and, in fact, Re by becomes nearly zero

(see Fig. 3b). The size of the k-band diminishes with in-
creasing pu until a value I is reached for which a finite
band does not exist. Flutter of the traveling-wave Type occurs
in each k-band and, in fact, the limiting value L coincides
precisely with the so-called "traveling-wave theory" for an in-
finite length panel., This type of flutter depends upon the
existence of a k-band for which Re Py > Re Py . In general,
very small amounts of structural damping eliminate the possi-
bility of this type of flutter except in the low Mach number
range or for very long panels., The reason is that a positive
amount of g increases Re Po and decreases Re by slighfly
so that the relevant inequality (Re Py > Re p2) can never be
satisfied. This is in sharp contrast to the standing-wave type
which is relatively insensitive to small damping values.

Interpretation of the roots

EBEach of the roots of ﬁ+ has a simple physical interpretatior
that helps to understand the flutter solution. Consider once
again the simple example when the aerodynamic forces are dropped.
Then each of the four §oots pl,pg,p3,plL yields a simple ex-
ponential solution, e 1 of the beam equation, If we combine

the exponential with the time dependence, each solution is of the

3

form
Ppx +ikt
e

The roots Py and p, can be interpreted as puré traveling waves.
Here Py travels in the negative x direction (toward the
leading edge) and Py travels in the positive x direction
(toward the trailing edge). The root pl decays exponentially

in the negative x direction and so is important only at the
trailing edge when the panel is long. Conversely, p., decays
exponentially in the positive x direction and so is important

at the leading edge. The roots Py and p3 are important for

the reflection of traveling waves at the trailing and leading

edges, respectively.
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Exactly the same interpretation can be assigned to the
structural roots of Bt . Now, however, the roots Ps and Py
have positive real parts so that they both decay exponentially
in the negative x direction., This decay leads to the con-
centration of the flutter mode toward the trailing edge.

The fifth root of ﬁ+ is wholly aerodynamic in origin,
It lies near the branch cut and is nearly pure negatlive imaginary.
Thus, it can be interpreted as a wave travéling toward the
tralling edge.

Interpretation of the branch points

The branch points Py
pretation. (Recall they are singularities in the transformed

and Py also have a physical inter-

pressure (2.4),) For an infinite length panel, the basic panel
flutter equation (1.16) has pure exponential solutions of the
form eP* ., Thus P(p) in (2.4) is the actusl pressure amplitude
for an exponential type solution. Further, if we set p = - 271/,
then P 1is the pressure amplitude for a pure traveling-wave mode
shape of wave length A . The branch points are combinations of
A, k and M where the pressure amplitude becomes infinite.

We have

am
A

2
"+

X

oy B steady flow

When the flow is steady and the surface wave pattern is stationary
(k = 0), we obtain the critical surface pattern wave length

for which the pressure becomes infinite. This "pattern
singularity" is the aerodynamic mechanism to which the

phenomenon of pattern ablation is attributed (see Ref, 19).

For traveling-wave type flutter, the structural root Py
is often very close to the branch point Pg Although the
phenomenon is not fully understood, the necessary root shift to
obtain traveling-wéve flutter appears to be augmented by the
proximlity of Py to this pattern singularity.
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ITI. ASYMPTOTIC RESULTS

A. General Theory for s —

Even though we have an exact analytic solution of the
flutter problem in hand, it is very useful and informative to
consider the asymptotic approximation for long panels., The
approximation is exact in the limit (s — ) and is useful for
numerical evaluation of flutter boundaries and mode shépes.
Also, new insights into the mechanisms of "standing-wave" and
"traveling-wave" type flutter are obtained.

The point of departure for the general theory as s — o
is the characteristic function F(x) or rather the ten indivi-
dual functions F (x) of which it is composed (see (2.19) and
(2.20)). To develop an asymptotic flutter condition (see (2.25)
and (2.26)), we must first expand each F (s) for s - o . This
is a straightforward operation since we have an explicit defini-
tion of each function in (2.20). The results are summarized

below:
P,s
F (s) = 2A e + F_(s) n =1,2,3,4,5
= f‘n(S) n = 6;7:8:9310 (3'1)
where
£°(p.) hi(p))
i _ L n’ _ n
- L(p )A P.S -
F_ (s) ,=—(—l—£ e ™ G, (s) (3.3)

&(p,,)

and an(s) is given in Appendix B where the functions Fn(s)
are evaluated in general. For s - o , there are two distinct
cases to consider that we call the standing-wave limit and

traveling-wave limit.
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B. Standing-Wave Limit

When the real parts of the structural roots P1sPpsPy are
of the same order of magnitude, then the only three characteristic
functions of importance are Fl:F2=F4 . Their asymptotic forms

are
p_s
F,(s) = 2A e + 0(1) n=1,2,4 (3.4)
and
P(s) = }Z ce ™ +0(1) (3.5)
n=1,2,4

This 1s the form of the characteristic function for the standing-
wave branch of the flutter boundary where, in fact, -

Re p; = Re p, = Re p, for s = o (3.6)

The formulae obtained in the standing-wave limit are strong
asymptotic results in that corrections are OTexp (- Re pns)}

compared to unity.

The flutter determinant and mode shapes for pinned and
clamped edges have the following asymptotic forms:

Pinned Edges

D(k,s) ~ 1 + 4+

Ay (py-Py)s pf - D)
A e L] ——2——————
1
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2 2
A, (Py~P,)s [P, - P -p, X -p, X
A 2 2 J\P1 n
2 2
A, (py-p,)s[pP; - P -p X -p, X
N UL S 2 4 o e 2% | o e L
K 5 5 J\P2 i
1 pl = P2

Clamped Edges

2

A Py~Ps)8 [Py = P

Dwﬁy~1+;e<ua)(5f?ﬂ ;
2 1 2

A

2
A Py-PqJ)8 (P, = P
LBy (Pypy) (2 4)_ -6
1

_pX
f(m)(s - X)~ p? e 1 + pg e

A, (py-Py)s [/p, - D -p, X -p; X
- TR ARt

Ay (py=pq)s [P, -7P -p-X -p; X
e R By

(3.8)

where X 1s the distance from the trailing edge. Note that
the mode shape is exponentially small near the leading edge.

If we examine the further limit of (3.7) and (3.8) as
M= and k- O we obtain the well-known approximations for
quasi-steady and static aerodynamic theory for large s . We
have '
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Quasi-Steady Theory

5t (p) = g(p) + % <p + ik ﬁi——:—f) (3.9)
Static Theory
B*(p) = &(p) + 5 v (3.10)
For either case
g%‘; = e’(py) +5
= 4p3 - eap + 2 (3.11)

The results (3.7) and (3.8) are much stronger than the quasi-
steady and static theory approximations. They are valid for
arbitrary Mach number so long as s i1s large. There is only
a minor difference in computational labor from the simpler
theories; i.e., we must calculate the three roots P1sP5sP)
from the zeroces of 5+ rather than the simple fourth order poly-
nomial (3.9) or (3.10). Finally we remark that the reason for
naming (3.7) and (3.8) "standing-wave" results is that we re-
cover the simple static theory in the limit., The actual mode
shape will, in general} have a traveling-wave component when
damping is present.

C. Traveling-Wave Limit

Another important limiting case is obtained when the
structural roots J<PN and p) lie close to the imaginary axis
and Py is well out on the real axis. In this case, the large
exponential part of the characteristic function Fl must be
removed, essentially since it is the difference between lower
order terms that leads to flutter, For the flutter determinants
(2.25) ang &2.26) to vanish, the coefficient of the function

1 . .
Fl ~ 2Ale must be set to zero, This leads to a single
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summation over the remaining functions; namely,

_]:_'O £ o 5 2
D(k,s) ~ zJ Fn(s) Qpl - pn> = 0 pinned edges
n=2
a0 2
~ 24 Fn(s) Py - pn> = 0 clamped edges (3.12)
n=2

In general, all cf the remaining functions F2 through FlO

contribute to D(k,s) . An important special case where only
two terms contribute 1s considered in the next section,

To derive asymptotic fcrmulee for the mode shapes, we write
the characteristic function in the form

F(x) = 2a.e + F(x) (3.13)

and substitute into the formulae (2.8). We get

g 2 ‘ ors | plx
2A1 [(pl - A>fo + fo ]e

£(x)

pinned

K p X bl {4 - 0
£(x) = 2a) [plfg = f”’Je oy (F T+ F.fo> clamped

o]
(3.14)
Now apply the boundary condition at the trailing edge for
large s . We obtain
’ - -pls
£y 2A, + F(s)e '
= -~ lnned
fo 2 = . . “Py S
2Al(pl - A) + (F7(s) - AF(s))e
4 bl -pls
£y 2A; + F(s)e
7= - 5 clamped (3.15)
-, - s
° 2A1py + F'(s)e 1
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M-

Substitute (3.15) into (3.14) and expand for large s to obtain

f(x) —pl(S—X)

il

[77(s) - p2F(s)]

- B(x) + p%ﬁ(x) pinned

-pl(S—X)

£(x) - F7(x) + plﬁ(x) clamped

(3.16)

[ﬁ'(s) - plf(s)] e

The efifect of the exponential part of F is only important

1
near the trailing edge where it is needed for reflection of

the incident traveling wave.

a strong asymptotic

X

The foregoing approximation is aggin
result in that corrections &are of e 18) compared to unity.
Where flutter is obtained within this approximation it is of
the traveling-wave type.

D. A Weak Traveling-Wave Limit

A special case of the traveling-wave result is obtained
when Re Ps = Re Py and both rcots are close to, but not on,
the imaginary axis, Also, we musE have s sufficiently large
that we can neglect terms of OQe Pa® compared to unity. 1In
this sense, the following results are weakly asymptotic. THow-
ever, they serve to illustrate some of the basic properties of
traveling-wave type of flutter,

For the case at hand, we can neglect all but the exponential
part of the terms F, and Fu in (3.12). Alternatively, we
obtain the same result for D(k,s) 1if we neglect the last term

in (3.7) and (3.8). Thus we have for the flutter condition

(2 2V
Ay jp, =P P)-P,}8
- _ﬂ:! % g e( 4Pp) =1 pinned
21ipy - Pp
\
Ay fpq - P Py-Py)8
- K& / 1 pt (Pyp) =1 clamped (3.17)
2



Each of these can be solved completely. Let

P, =2, + i bn
and
A p2 - p2 °
Rel® - _ 471 4 pinned
K 2 2
2\Py - P,
2
Ay [ph - D
= - K& —l—:——i clamped
2\Py ~ Po

Then for either of (3.17) we have

- i[{b,~Db
pe tuB2)s  T(Bypp)ste]

or separating real and imaginary parts

a.,) —-a, S
Re( 4 2) cos {(bu - bE)S + ¢} =1

—_

]

[
|
[

sin | {by - b2)s te = 0
From the second equation we have
(b2 "'b}_l-)s '¢ =2m7T m=l,2,--a

and upon substitution in the first of (3.19), we get

s = — los R

aLl.-az

In summary, we have the following equaiions for s :
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S=__2r—'lu9. m=l,2,... (a)

Dy = b4
- loal () (3.20)

where R and ¢ are defined by (3.18). The intersection of
(3.20b) with the branches of (3.20a) yields an infinite set of
flutter points. Whether or not flutter of this type is possible
at all depends upon the algebraic sign of ay = a, . We shall
see by numerical example in Section IV that such flutter is
possible, but that it is very sensitive to damping. Mach

number and other small changes that can switch the sign of

a,u-"ag.

E. Infinite Length Static Theory

Here we give a limit result that is based on the simple
static aerodynamic theory (see (3.10). When there is no
damping of any kind it is found by numerical calculation that
flutter based on static aercdynamic theory with s — o occurs
when the roots Py and Py coalesce with p, on the real
axis. In such case, the characteristic polynomial and its
first two derivatives must vanish simultaneously to yield a

triple root. Thus

p - Ap2 +§% p+B=20
up3 - 2ap +S§ =0
6p° - A =0 (3.21)

These equations are easily solved for the root pq and other
physical parameters at flutter. The result is:
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C.R r
_ 2 xy xY
P ( 3 +6‘)
1/3
o1 (a7
Hs w. Py 2B
D 1/3 C o0, + T, 1/2
Ksow.™ 2= (3hipq 1+ T, \2
ngxy<l + 55—%7—>
27y
r, =rT + r r =71 +r 22
X X 2y Yo Y1 (3 )
where
P
Bo= —5 = %— mass ratio parameter
P o
1/2
3
p.'E‘:aoo 1 SOH' . .
n = R =% \"1= material altitude parameter
i/2
E 1
a, = [ —m—E—J speed of sound in the
ps(l - v7) panel material
(3.23)

The results (3.22) are useful for numerical calculations
with the exact formulae since they yield an approximate upper
bound on for which standing-wave type of flutter can occur.

Also, one can see immediately the effect of edge restraint,
membrane stress, Mach number, material and altitude on
flutter thickness or p value, When r, = 0 , we have

p, = ﬂi = 1,81 pinned edges

/3

= 3.49 = 2,02 clamped edges

3

36



Clamping the stringers causes about a 10% reduction in the
plnned edge flutter u . Membrane tension causes an increase
in Py and a reduction in Bg w2 while compression has ‘c.hel/3
opposite effect, Also, we see that increases as M
for large M and increases as n2/3 . 5e£se materials with
low sound speeds at high altitude require greater u for
stability, Both cases, however, require smaller panel
thickness.

F. Semi-Infinite Traveling-Wave Theory

In Ref, 20 Dowell treated the infinite length discrete
panel, and in Ref., 21 some results for the panel array are
given, A comparison of the traveling-wave results with exact
calculations for very long panels (see Section IV) suggests
that "traveling-wave theory" is a valid limit of the exact
theory (at least when structural damping is absent). Assuming
that the traveling-wave theory is a valid limit (a theoretical
proof is lacking) we can construct the solution of a semi~
infinite panel array that has its leading edge upstreanm at
infinity and a trailing edge at the origin.

The flutter boundary for the semi-infinite panel array is
the same as that for an infinite length array. The detailed
method of calculation is discussed by Dowell (Ref. 20). Here
we summarize a convenient parametric method. If t is a
parameter ranging from 1 +to infinity, the formulae are:

1
2
g = —p 2Tk b = (1 - %) a = 22
t2(1 + t) ’
2 2 2, 2% _ %
x = b(M/a-+xAM - b + b /a ) g = (ne N xe)
NZ - b2

=

e Lot n0? - 8RR

c = wave speed

2x(1l + dy)2
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*
vt = (1 + ay)c flutter speed
=2 :
A== wave length (3.24)
where
, o
1
D 2
c_ = 2n‘<——- reference wave speed
o] PgT

(3.25)

For fixed values of M, g, n, r T, s We calculate the

2
* bd
minimum of U as a function of the parameter t . The re-

sultant value is the flutter speed.

The main point of interest here is the calculation of the
mode shape. Recall that the infinite length mode shape is
simply a sine wave traveling in the stream direction with
velocity c* . We ask what happens when the wave approaches
the trailing edge.

Referring once again to the root plane, Fig. 2a, we note
first that the traveling-wave root is the root Py 3 i.e.,
the wave length, A = 2n/|p4| . VWhen =g ., as computed
from (3.24), Py is pure negative imaginary. For an infinite
panel Py is thglaply admissable root in that the corresponding
eigenfunction e + does not grow or decay in the upstream or
downstream direction. For the semi-infinite panel, the roots
Py and p, are also admissable solutions; i.e., we can write
the mode shape of the semi-infinite panel in the form
-p X -po¥

+ Aje + Ae (3.26)

_pX
f(x) =e 4

where X 1is the distance measured upstream from the trailing
edge. We have normalized f such that it tends asymptotically
to a unit amplitude sine wave at upstream infinity. Now apply
the boundary condition at the trailing edge

- ecf'(o) + epf”(o) =0 (3.27)
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The final result for A and A2 is

1
uy - u u, - u
u2-—ul 2 112-111
u = €e€p_ + €p 2 n=1,2,4 - (3.28)
n ¢ n P n 273 *

To calculate the mode shape for a semi-infinite panel the
procedure is the following:

1. Calculate a traveling-wave flutter point using (3.24).

2. For the flutter point obtained in step 1, calculate all
roots of the characteristic function DT (see Eq. (2.6)
and isolate Py and Py . Recall Py is obtained in
step 1.

3. Use the roots to calculate the mode shape with (3.26).

Numerical calculations are given in Section 1V,
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IV. NUMERICAL RESULTS

A. Description and Verification of the Computational Scheme

In the present sectlon, we show how flutter calculations
are made Wwith the Zeydel method and give some comparisons with
previous results that verify the computational scheme. 1In all
calculations presented, the following conditions hold:

. Pinned leading and trailing edges;
. “ingers without torsional restraint (pilnned);

=Q = 1);
: Xy ~ Yy

. Zero viscous damping (v = 0);
5. No elastic founcation (Ke = 0).

1
2
3. Isotropic panel material (Q
n

A complete discussion of the dimensionless parameters used to
display numerical results is given in Appendlx C, together with
some useful formulae for conversion to dimensional quantities.

The k versus s parameter plane 1s used to ssarch for
flutter points on the computer. Typical results are given in Fig.
4 and are calcula ted as follows. The parameters M , 4 , 1, & ,
r. , and r_ are fixed. Then, the flutter condition (see (2.25)
and (2.26)) is expressed in the form

D(k,s) = Dg(k,s) + 1 Dy(k,s) = O (4.1)

I
where DR and DI are the real and imaginary parts of D .
The solid curves in Fig. 4 are the locus of points where DR =0
There are an infinite number of branches of DR of which the
first ten are shown (labelled m = 1,2,...). The branch index m
is the number of half waves 1ln the deflection mode and may be put
Into one-to~one correspondence with the natural vibration modes.
In fact, the branches tend asymptotically to the locus of natural
frequencies of the panel for large k or for vanlshing aero-

dynamic forces.

The actual flutter points in Fig. 4 are obtailned as follows.
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FIGURE 4. COMPUTER PARAMETER PLANE (k versus s) AND TYPICAL
CALCULATION OF FLUTTER POINTS
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The value of DI(k,s) is computed along each branch for different
k wvalues. When DI changes signh at two consecutlve polnts on
any branch, we iterate for the flutter point that lles 1n between.
There are two distinct types of flutfter polnts that are obtained
in this way (see points A and B in Fig. 4):

Standing-wave flutter (Point A, Figure 4)

The sign of DI(k,s) alternates as we traverse successive
branches. Furthermore, 1f p 1s sufficlently small, as it is
in Pig. 4, then the branches coalesce in pairs (1 and 2), (3 and
4), ete., for small k (of the order of a few tenths). At each
point of coalescence, DI is zero and we obtalin a flutter point.

The coalescence at point A , for example, in Fig. 4 is the
coalescence of frequencies of branches (or modes) 1 and 2 as the
length-to-width ratio is varied. The boot of the k-s plane is,
In fact, Jjust a new way of displaying the well known frequency
coalescence type of flutter that is characterized by strongly
coupled modes and a nearly standing wave type of mode shape. We
refer to this type of flutfer as stahding-wave flutter in the
present study, even though 1t 1is only in the absence of all damp-
Ing that the mode shape 1s a pure standing wave.

The standing-wave flutter points are approximated closely
by the simple static aerodynamic theory with zero structural
damping even at fairly low values of the Mach number. Subsequent
results wlll substantiate this claim. The largest value of
for which standing-wave flutter can cccur 1s therefore given
approximately by . in (3.21). For example, for the values
of M and 7 in Fig. 4, the largest value of p 1s approxi-
mately 69.3 . Beyond this value of u , the branches do not
coalesce in the k versus & plane.

Traveling-wave flutter (Point B, Figure 4)

The second type of flutter is obtained for larger values of
k and occurs in pairs on successive branches. There is always
a lowest branch for whleh 1t can occur at all;e.g., 1t is branch
3 in Fig. 4. All of the flutter points occur in a finite k-band.
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In Fig. 4, ¥ 1ies between .5 and 3.7 . As W 1is increased,
the k-band decreases to zero at some llmiting value p = Moo,
and the lowest branch number for flutter tends to infinity. We
shall see, by numerical example, that the limliting value is
predicted by the simple traveling-wave theory" (Refs. 20, 21)
for an infinite length panel when g =0 . It i1s for this
reason that we have chosen to ldentify the second type of flutter
as traveling-wave flutter.

In Table 1, a comparlson ls made of flutter points calculated
by the Galerkin method (Ref. 22) and the present exact method
for a square panel at M = 1.35 .

TABLE 1. COMPARISON OF GALERKIN AND EXACT RESULTS
(g = .01 , r_ =1r_=0)

X y
S
i 5 Galerkin =~  Exact Galerkin = Exact
58.02 84.227 1.50 1.49997 1.0 .99998
38.86 59.147 1.70 1.69942 1.0 1.00017
28.70 46.386 1.80 1.79843 1.0 1.00049
17.63 32.127 1.90 1.89412 1.0 1.00181

We conclude from Table 1 that: (1) the Galerkin procedure gave
converged results for the case considered in Ref. 22, and

(2) the present exact scheme 1s calculating correctly. Further
verification is to be found in the nature of the mode shape. In
Ref. 22, 1t 1s pointed out that the third mode 1is dominant in the
Galerkin calculations. With the exact procedure, flutter occurs
in every case on branch 3. The actual mode shape for the first
point in Table 1 is given in Fig. 5. It is clearly dominated

by the third "assumed mode." Finally, we remark that all flutter
points in Table 1 are of the traveling -wave type and form part
of the critlcal flutter branch.

B. Effect of Altitude and Panel Material on Flutter Boundaries

For a given set of pu values, the k-s plane calculations
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FIGURE 5. TYPICAL TRAVELING-WAVE FLUTTER MODE SHAPE FOR A SQUARE PANEL;
M=1.35, u=258.02, & =28427, g=0.01, k=1.5



are repeated to obtain design curves of U versus 8 . Results
are glven in Figs. 6a, b, ¢, and d for four values of the
materlal altitude parameter 7n at M = 1.35 . PFor any panel
material, the conversion of these data to thickness versus panel
length is stralghtforward. The detailed procedure is given in
Appendix C.

The present computational scheme has the advantage of giving
a complete curve for all length-to-width ratios. We note that
for all of the results in Fig. 6 the maximum thilckness required
to prevent flutter 1ls requlred by the very long panels. Both
the standing- and travelling-wave branches of the flutter boundary
have this property. We conclude that a very conservative esti-
mate of the design thickness of a panel can be calculated from
results for s = o .

The traveling - wave branch of the flutter boundary consists
of a serles of loops 1In the 1 vs. s plane. The practical sta-
bility boundary 1s the envelope of these loops. Each loop
corresponds to one of the branch numbers on a k vs. 8 graph
like Fig. 4. Thus, for any value of 8 , we can simply read
off the number of half waves in the mode shape, as well as the
W value at flutter.

The envelope of the traveling wave loops tends to a
limiting value in each of the curves of Filg. 6. This limit is
in all cases very close to the flutter “t.w. predicted by the
"traveling -wave' theory of an infinite length array of panels
(Ref. 21). Also, the wave length is calculated to be about one
panel width in each case. The result based on "traveling-~wave'
theory with g = 0 1is included on each curve of Fig. 6. In all
cases, the present results tend to asymptote slightly below the
g = 0 1limit value. These results indilcate that true structural
damping has a stabllizing effect on the traveling wave flutter
branch. Recall the result of Dowell (Ref. 20) that any small
amount of viscous-type damping always leads to instabllity when
M>1 .
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A comparison of the traveling-wave branches in Figs. 6a, Db,
¢, and d shows that the largest mass ratios to prevent flutter
are required at the highest altitude (largest n). However, 1if
we convert to thickness, following Appendlx C, we find that the
largest thilckness 1s required at low altltude. The conversion
to thlckness is given in Table 2 for aluminum panels and
s =1, 2, o .

TABLE 2. THICKNESS REQUIRED FOR STABILITY
AT M = 1.35 AND DIFFERENT ALTITUDES

s =1 8 =2 5 = o
a 3 z -3 z 14 X
190.8 17.6 . 00584 22.0 . 00730 26.4 .00875
331.0 28.5 .00511 36.0 . 00645 42.6 . 00765
476.5 39.0 . 00479 50.0 . 00614 59.0 .00724
809.8 58.0 . 00421 80.0 . 00581 95.9 . 00696

The travellng-wave branch 1s the critical flutter boundary
for all of the results in Fig. 6. It is of interest, however,
to discuss the standing-wave branch. The small clrcles in Fig.
6 are standing-wave flutter points calculated with the exact
theory for g = .01 . They are points of coalescence of branches
1l and 2 in the k-s plane. The solid curve in each part of
Flg. 6 is the result obtained with statlc aerodynamic theory for
g = 0 . The exact results are very close to, and slightly below,
the statlc-theory curve. Thlis result suggests that static-
aerodynamic theory is adequate to predlct the standing-wave branc!
of the flutter boundary even for relatively low Mach number. A
similar and stronger point of view 1is expressed by Bohon and
Dixon (Ref. 23). They give theoretical and experimental evidence
to support the claim that the standing-wave branch (calculated
with static aerodynamic theory) is the critical flutter branch
even at Mach numbers as low as 1.3 when the length-to-width
ratio 1s greater than unity. Results of the present study (see
Fig. 6a) support this view for sea level conditilons (small values
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of 7). At higher altitude and low Mach number, there is a
considerable difference between the standing- and traveling-wave
boundaries (see Fig. 6d) and the latter 1s the critical branch.

The results presented in Fig. 6 also indicate that struc-
tural damping has a stabllizing effect on the standing-wave
branch. Filnally, we remark that the asymptote s w of each

standing-wave branch is given by the simple 1limit result (3.21).

The standing- and traveling-wave branches differ in several
fundamental respects. First, the reduced frequencies are much
smaller on the standing-wave branch - in particular, at higher
altitude. Typical results are given in Table 3 for 8 = = .,

TABLE 3. REDUCED FREQUENCIES FOR STANDING-
AND TRAVELING-WAVE BRANCHES
(M =1.35, 8 = °°>

k k
n S-wave T-wave
190.8 0.234 0.987
331.0 0.198 1.078
476.5 0.173 1.129
809.8 0.147 1.192

Second, the mode shapes are vastly different. In Flg. 7, the
standing-wave mode shapes are glven for the two points A, B
in Fig. 6d. The deflection 1s concentrated strongly near the
trallling edge and has a very long wave length for large s
The traveling-wave mode shapes are shown in Fig. 8 for points
C, D, E in Fig. 64. The deflection is of much shorter wave
length (order of the panel width) and is distributed over the
panel length with only a slight concentration at the trailing
edge. The mode shape at point C, which 1s a critical flutter
point, 1ls almost a pure sine wave. It lllustrates why the
traveling-wave flutter branch is often characterized as "single-
degree-of-freedom-flutter" in the low supersonic regime.
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e

Maximurn Location
w/T = 446 x = 1.26
S, = 223 = 1.30
8, = o4.5 = 1.26

A1l maxima occur near the trailing edge (s = 1.44).

To use the dimensionless data to calculate stress, we pro-
ceed as follows. Suppose the panel is aluminum. From Fig. C-1
in Appendix C, we first convert the flutter u into thickness

for 1 = 300. We obtailin
o)
~ 2200\p_,
5 0
_ 20.7
= 5300 (-445)
= .0058
Then from (1.21)
2
% max " Ex 2 (Sx)max
12(1 - v<)
and for E = 107 psi and v = .318 , we have
5 _ 107(.0058)°(223)
X max o qo(1 - (.318)2)
= 7110 psi
cy max = 3020 psi

The conversion to stress for any panel material is equally

straightforward.

The second example 1ls for the followlng conditions:

M= 1.35 g = .01

n = 260 ry. = 0

L = 18.8 r = 0, 100
X1
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The mode shapes for a semi-infinlte panel are shown in
Fig. 9 for M = 1.3 and two different altltudes. At low alti-
tude (Flg. 9b) the incident traveling wave 1s a pure sine wave
to within about 5 panel widths of the tralling edge, where it
grows to approximately twice the amplitude of the lincident wave.
At altitude (Fig. 9a) the incident wave is affected much sooner
by the ftralling edge, l.e., at about 10 panel widths. Then, the
amplitude decays slightly before it grows again to twice the
incldent wave amplitude.

C. Sensitlvlity of Traveling-Wave Flutter to Structural Damping

We have seen that structural damping has a small stabilizing
effect on the standing-wave flutter branch; also, for M = 1.35
and smaller, 1t has a slightly stabilizing effect on the traveling-
wave branch. For larger Mach numbers, structural damping has a
much larger stabilizing effect which we want to 1llustrate here.

The effect of structural damping ls best 1llustrated with
the weak asymptotic results presented in Section IIID, Referring
to Fig. 4, the branches for which the real part of the flutter
determinant, DR , 1s zero are well approximated by (3.19a).

The locus of points where Dy = O is approximated by (3.19b)
(dashed line in Fig. 4). The accuracy of the latter curve is
not as good as that of the real branches but is satisfactory for
larger values of s . We therefore use (3.19) to demonstrate
the effect of g on the traveling-wave flutter branch for large
M .

For higher Mach number, the travellng wave flutter branch 1is
typically like that in Fig. 14 in Section VF . The standing-wave
branch is crltical up to some value of s where flutter then
becomes of the traveling-wave type. The minimum value of s
where traveling-wave flutter can occur is approximated by the
weak asymptotic formulae (3.19). The following typical result
1s obtained.

For M = 2 at sea level (n = 147) and un = 60 , the
minimum value of s for traveling-wave flutter is about 1i4
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We compare the critical flutter point for r, = 0 and 100 .

For rx1 = 0 , the critical flutter point is on branch 3 with
k =2.273 and s = 0,935 . The stress level is zero. When
rxl = 100, the critical point 1s on branch 5 with k = 2.18 and
s = 1.74 . The increase in s 1s a measure of thé stabilizing

effect of the nohlinear membrane stress.

100

The maximum deflection and stress for the case with T
are as follows:

Maximum Location
w/t = 2.66 x = 1.65
8, = 1705 = 1.70
8y = 739 = 1.70

Again, the maxXima are near the ftrailing edge. The calculated
stress levels in an aluminum panel are:
Oy 31,900 psi

oy = 13,800 psi

The stress in the filrst example is essentlally below the
fatigue 1imlt for aluminum and so can be termed a weak flutter
point. For the stress 1n the second example, a fatigue life of
approximately 100,000 cycles can be expected (see Ref. 24). For
an aircraft panel, such flutter cannot be tolerated. However,
for a one~shot missile application , such a stress level may be
satisfactory when the number of cycles is qulte small. Further
discusslon of the fatigue life of Saturn V panels 1is given in
the followlng section.

F. Flutter Boundaries for a Saturn V Operational Trajectory

We conclude our investigation with some results for alum-
inum panels on a typical Saturn V operatlonal trajectory. The
pertinent trajectory data (supplied by Marshall Space Flight
Center) are given 1in Flg. 12 and Table 4. The vehicle goes
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TABLE 4, DATA FOR SATURN V TRAJECTORY

Altitude M ?’irelzr:it;e p/p p/p a/a /1 Aluzlinmn
£t 1b/ft2 © © ° o
25,000 1.00 557 RIVIECTS 3716 .911 2,03 275
30,000 1.19 625 .37h7 2975 891 2,38 327
35,000 1.37 677 .3106 <2359 871 2.80 384
40,000 1.55 690 2471 .1858 .868 3.51 482
45,000 1.75 690 .1945 1462 .868 INRITS 612
72,000 1.93 680 .1531 .1151 .868 5.66 778
55,000 2.11 635 .1206 .0907 .868 7.20 988

60,000 2.30 583 L0942 L0714 .868 9.20 1260



through M =1 at an altitude of 25,000 £t and reaches maximum
dynamic pressure at 40,000 ft and M = 1.55

Complete design flutter boundaries (L versus s) were calcu-
lated at two points on thke trajectory, M = 1.37, 1 = 384 and
M =1.55, n =482 . The results are shown in Figs. 13 and 14 .
The results in Fig. 13 are very similar to those presented in
Section IVB . The travellng-wave branch 1s the critical flutter
branch for all s . Also, both branches tend asymptotically to
the respectlive limlits e . and us.w. for large s . The
results in Fig. 14 are typical of the type of flutter boundaries
obtalined for higher Mach numbers. The standlng-wave branch is
the critical flutter branch up to s = 3.1 . Then, the traveling-
wave branch becomes critical wlth a Jump in the mass ratio or
thickness required for stabllity; also, there is a jump in the
frequency. The asymptote of the traveling-wave branch is con-
siderably less than T due to structural dampling. As was
pointed out in Section IVC , thils sensitlivity to small values of
g 1s typlecal at higher Mach numbers.

Finally, we give a design flutter boundary (thickness~to-
wldth ratio versus altitude) for aluminum panels on the Saturn V -
S«IVB forward skirt. The material properties are:

E = 10.3 x 1O6 psi
v = 0.33

Py = 5.36 slugs/ft>
a_ = 18,450 fv/sec .

s
Curves of 1 versus altltude are given 1In Fig. 15 for two length-
to~-width ratios, 8 =2 and s = 4.48 . The latter case
corresponds to an actual panel used on the forward skirt of the
S-IVB stage. The flutter boundary obtained wlth the traveling-
wave theory 1s also shown for comparlison.

For flxed length-to-width ratlo, the critlcal flutter bound-
ary is the dome-shaped region for small Mach number and the
standlng-wave branch for larger Mach number. Thls is a famlliar
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type of flutter boundary (see e.g., Refs. 12, 25, 26) that shows
qulte clearly the increased thlckness requlrements 1in the low

Mach number range. The present results provide several insights
Into this familiar phenomenon. PFirst of all, they show the

sharp transltion from flutter of the traveling-wave type to
flutter of the standing-wave type. The transition Mach number
depends strongly on the length-to-width ratio and the level of
structural damping. As the length-to-wldth ratlo is increased,
the critical flutter boundary coincides with the simple traveling-
wave theory to somewhat higher Mach number. However, the presence
of any small amount of damplng eventually causes the flutter
boundary to make the transition from the traveling-wave branch

to the standing-wave branch. (Compare with Fig. 4, Ref. 26) The
rapld increase in thickness requirements with s points to the
fact that long narrow panels should be avoided in design situa-
tions if at all possibille.

One of the panels on the 3-IVB forward skirt has a length-
to-width ratio of 4.48 and a thickness-to-width ratio of 0.0048,
Flutter was detected in flight (Ref. 27). From the durve for
s = 4.48 in Pig. 15 , we predict that flutter should set in Jjust
above 30,000 £t and subside at 45,000 ft . The theory indicates
that the flutter is of the traveling-wave type with 7 or 8
half waves 1in the mode shape. Also, flutter occurs in the region

of maximum dynamic pressure.

Some remarks on the fatigue 1life of the panel are in order.
The vehicle traverses the 15,000 ft region of panel flutter
at an average velocity of about 1500 ft/sec so that the actual
time of flutter is, at most, 10 sec . The flutter freqguency is
approximately 450 cps . Thus, the panel undergoes approximately
4500 cycles of stress reversal. The stress level calculated in
the second of the two examples 1n Section IV-B was 31,3900 psi
The fatigue 1life at this level is 100,000 cycles so that flutter
would not be destructive. We note, in fact, that a stress level
of 45,000 psi 1s tolerable without failure with only 5000 cycles
(Ref. 24). The relatively short duration of flutter in a
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Saturn V flight points to the need for a reasonable estimate
of the stress level so that fatigue may be used as a criterion
for design.
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V. SUMMARY OF CONCLUSIONS

We have presented a general theory for calculating flutter
boundaries and making stress estimates for an infinite spanwise
array of panels. The principal conclusions of the study are:

1, Calculations of flutter points and mode shapes with the
exact Zeydel method are in complete agreement with results ob-
tained with the Galerkin method when the latter are converged.

2. The Zeydel method yields a flutter boundary for all
length-to-width ratios, but is particularly suited to low-aspect
ratio panels where modal analyses are difficult, if not im-
possible, to apply.

5., For fixed panel width, the thickness required to present
flutter increases with length-to-width ratio, s, and approaches
& limiting value as s — o,

4., The flutter thickness is largest at low altitudes.

5. Two distinct flutter branches are predicted by the
exact theory. The first branch occurs at low reduced frequency
(order of a few tenths) and agrees with results based on the
simple static aerodynamic theory. We call it the standing-
wave branch. The other branch is obtained at higher reduced
frequency (order unity) and tends asymptotically to results
based on traveling-wave theory as s — », providing g = 0. We
call it the traveling-wave branch.

6. At low Mach number, the traveling-wave branch is the
eritical flutter branch and gives the well-known dome-shaped
flutter boundary in the low supersonic regime. At higher Mach
number and finite s, the standing-wave branch is critical.

7. The Mach number for transition from traveling-wave
flutter to standing-wave flutter is very sensitive to structural
damping and the length-to-width ratio. The dome-shaped flutter
boundary extends to higher Mach number when s is large.

69



8. Small values of structural damping are highly stabiliz-
ing and essentially eliminate the traveling-wave flutter branch
at higher Mach number,

9. The flutter thickness for an array of panels is smaller
than that for a single panel when the Mach number is moderately
low and s is large.

10. Two example stress calculations are given. The maximum
stress occurs near the trailing edge and close to the point of
maximum deflection.

11. Design flutter boundaries for aluminum panels on a
typical Saturn V operational trajectory are given. Flutter is
predicted in the regilon of maximum dynamic pressure for a panel
on the forward skirt of the S-IVB stage in agreement with flight
data. PFailure of these panels is not likely because of the
relatively low number of stress reversals in flying through the
critical flutter region.
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APPENDIX A

Mode Shape for a Partially Clamped Beam

Here we consider the problem of calculating the.eigenvalues,
mode shapes and certain integrals of the mode shapes of a
partially clamped beam. The problem is stated mathematically as
follows:
U
L
-5%:0

Q

dy
g(0) = g(1) =0

€,8°(0) - €8 (0)=0

c.&’(1) + epg"(l)==0 (A.1)

where e, €, vary between zero and one and give the relative

degree of end fixity.
The general solution of the beam equation can be expressed
in the form

g(y) = A sin (By - ¢) + Be~BY 4 ce-B(1-Y) (A.2)

Now apply the boundary conditions g(0) = g(l) = O . We obtain
s pair of equations for B and C

1 e P B, - sin ¢
_ = - A ¢ (A.3)
e P 1 c sin (B - ¢)
To calculate B and C we neglect terms of order e'26 compared
to unity. This is justified on the grounds that the smallest
eigenvalue of & pinned-pinned beam is 7 and of a clamped-clamped
beam is 4,73, Thus

e%B < Lo02 pinned~pinned
< .0001 clamped-clamped (A.4)
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For arblitrary values of ¢ and €, we expect the error, there-
fore, to be correspondingly small. This approximation is used

throughout the subsequent discussion,

With the foregoing remark we calculate the solution of (A.3)

-

B= A sin¢>+e_B sin (B-qb)]

]
C=-A [e-B sin ¢ + sin (B - ¢)] (A.5)

and write the general solution in the form
g(y) = A {sin (By - ¢) + [sin d + e P sin(p - ¢)]e_6y
- [e—ﬁ sin ¢ + sin (B - ¢)]e'5(l-y)} (A.6)

It remains to determine the phase factor ¢ and the eigenvalues
B .

Application of the remaining boundary conditions yields the
following pair of equations for ¢ and B8 :

Pec(l - 2¢7P gin B) - (e, + 2€pB - 2€ce'5 cos B; (cos )

€, cos B (2€p5 + €,) cos B ¢ ) =

- (2ep5 + ec) sin B + €, sin B - QeCe_6 sin ¢

L J
T

Since cos ¢ and sin ¢ cannot be zero simultaneously, the
determinant of the coefficient matrix must vanish. Thus, we
obtain the characteristic equation for the eigenvalues,

e (e, + 2€pB) cos B - 2ep6(ec + epB) sin B.= 2(—:c2e-B ‘ (A.8)

The phase factor ¢ 1is calculated from either of the equations
in (A.7). Thus we have
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=

€ <l - 2e"P sinB)
tan ¢ = (A.9)

- -p
€, + 2€p6 2€ce cos B

T T
i;2,< ¢ < 5

The mode shape corresponding to each elgenvalue is given by (A.6)
with an appropriate choice of the normalization factor A .

Two familiar speclal cases are the following:

Pinned Edges

For this case we have ec =0 and € =1 , Thus we obtain
from (A.8) and (A.9)

-2ep252 sinB=0 — sinB=0 — B=nr §=12,...
tan ¢ = 0 = ¢ =0
g(y) = A sin nny n=1,2,...
(A.10)
Clamped Edges
For this case we have €, = 1 and ep = 0 , Thus we have
cos B = 2P tan ¢ =1 - 2¢”P sin B (A.11)
The solution for B and ¢ is
_ _ - 2o+l
_2n + 1 n 2
B === 1m-2(-1) e
_ ontl
n 2 -
¢z =T - 2(- 1) e n=1,2,... (A.12)

and for the mode shape we use (A.6).

Integrals

It is next of interest to consider the following integrals
of the mode shape

1
n
o W
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We define C, to be minus unity. This normalizes g(y) and
fixes the constant A in (A.6). Upon integration we find

A= L2
N
[l - 4e™P gin ¢ sin (B - ¢.)J2
= /2 pinned
- /
= V'?—_ - clamped (A.14)
1 -(-1)ye ™
Next consider the integral
1
d
€y = -fg(y) 5 4y (A.15)
0

Now the mode shapes are either symmetric or antisymmetric about
the center y = 1/2 . Thus

= - symmetric

In (A.15), we let y =1 -t so that
1

Cy =L/\g(l - t) é% g(l - t) dat
0

1
=f g(t) dit g(t) at
0

=-C (A.17)

We conclude that Cl = Q0 for all modes.

The integral 02 has the following form
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C, = A;EE {l - = [sin ¢ (cos ¢ + sin ¢)
+ sin (B-¢)<cos B- ¢) + sin (B- ¢)>]

+ 4(1 - %) ePsin ¢ sin e - ¢)} (A.18)

where A 1is given by (A.14). For pinned and clamped edges we
have

o = (H?T)2 pinned

= Eﬁ[ﬁﬁ<} et l)ﬁe_ ﬂﬁ) _ J clamped (A.19)

1 - 2(- 1)~ g

The integral C3 is zero by the same argument leading to
Cl . For C4 we use the differential equation to get

1, 1
—fd—ﬁgdy=—fﬁug2dy
o 0

b (A.20)

Cu

]
|
)
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APPENDIX B
Numerical Algorithm for F(x)

Here we give a procedure for evaluating each of the
characteristic functions numerically. We have

F_(x) = epnx<An - BnGn(x)> (B.1)
¥ ~(p, +iKM)E
G, (x) =6fe n J (re)de (B.2)
.. h(p,)e(@,) ’ . h(p,)£(p,)
nooa%(p,) " a'(py)
_D+(pn) = 0 s n = 132,3:“‘:5
B—(pn) =0 D n = 6’7:8:9:10
o (p) = g(p) ¥ HRL (.3)
h®(p)

To evaluate Fn(x) we use an approximation of the Bessel
function given by Luke (Ref.28) for small argument and the
asymptotic expansion for large argument. Thusy

3
1
aLcos ALt + 2J4q(t) t<a

r=1

I

7 (%)

_ 2r - 1
A, = cos ("—[L'Ei_ 1r>

= /?z,b—cos@:---]lr t > a (B.4)

where a i& the crossover point, The error term in Luke's
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approximation of JO is proportional to Juq(t) » and so
decreases rapidly with increasing q for fixed t . For.
example, 1f q = 10 , the approximation 1s accurate to four
decimal places for t < 24 ., Since the asymptotic expansion is

.good to four decimal places for t > 24 we have a uniform

approximation of Jo(t) for all t . Also the approximation 1s
most convenient for subsequent integrations that must be per-
formed.

Because of the split range of the Jo approximation, there
are two cases to consider in the evaluation of Fn(x) s 1.e.,
x < a/" and x > a/T :

Small Argument (x < a/I’)

For x < a/T" we substitute the approximation of Luke into
(B.2) to obtain

N i 1 L + KM

r=1
where x

I(a,x) =f e” % cos t at (B.5)
0

By straightforward evaluation, we get

ax

af(l - e” ™Y cos x + e~ sin x

L(ex) = o® + 1

a|a * i|_> €

ix{l - (a - i)x] +1 -e X cos x . O<a€2>
a + 16 12

ala - 1] < e

- ix[l - (a+ i)x] +1-e ® cos x . a€2>
- a - 16 12
ala + 1|.g €
(B.6)
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The second two formulae are needed when a root is near the line

joining the two branch points.,

Large Argument (x > a/I')

For x >, a/T' the problem is

The plan is to evaluate Gn(x)

result to the left half plane by analytic continuation., We write
" - (p HiKM)E _
Gn(x) =L/1e Jo(Pg)dg - G, (x)
0
-1 -
=1n"Z(p,) - T (x) (B.7)
and so
Pn¥ | =
Fn = 2Ane + Fn(S) n= 132:3:4:5
= F_(s) n=6,7,8,9,10 (B.8)
where
= X _
F (s) = Be G, (x)
— Y - (p +iKM)g
Gy = e 0y (re)ae (5-9)

X

To evaluate G (x) we substitute

for J  into (B.9). We get
o«
e /2 .1 - ot

I'x

This integral is easily evaluated

error function. The final result

for

slightly more complicated.
Re Py > 0 and extend the

the asymptotic approximation

cos (t - w/4);%%
o = Eﬁ—;—@ (B.10)

in terms of the complementary
is
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1 'ig erf/|p,+i(KM-T) JX e 12[ erfc\/m }
——w %e

%) = 75 VB _FE(RH-T) o FL (BT J
(B.11)
where
2
erfe z =§—.ﬁfe't dt (B.12)

Z

The result (B.ll) is an analytic function of P, except at the
two branch points, and is a valid representation of @h(x) in
the right half plane Re Py > 0 . By analytic continuation we
conclude that (B.1l) is valid for all p = in the complex plane.

To evaluate erfc z for complex argument, the following
formulae are useful (Ref.29)

erfc 2 =1 - erf z

2
-X
erf (x + iy) = erf x +~%;; [(1 - cos 2xy) + 1 sin 2xy]
[ea] _.—
+;2-r z [f (x,y) + ig (x,y)] + e(X,Y)
(B.13)
where
fn(x,y) = 2X - 2x cosh ny cos 2xy + n sinh ny sin 2 xy
gn(x,y) = 2x cosh ny sin 2xy + n sinh ny cos 2xy
—~ 1~16 - L
le(x,y)] = 107 ert(x + iy)| (B.14)
e ? 1 1
erfc z ~ (# +-——§ + 0 (~E) (B.15)
T 2 2z 2
Z =
]arg zl < 3%
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In conclusion we glve the following formulae for An and
B that are easily derived from their basic definitions:

n
4(p,)
Bn = m An
. £°(p,) h'(p,)

hy = 6°(0,) + &) 3 - ) (.16)
g(py) = pﬁ - Apﬁ +B , &g%p,) = 4p,3, - 2hp,
o) =5 (o, +10)°% L, 47(p,y) = 2 (p, + 1K)
n(p,) = (p, + iKM)Z + I° , h'(p ) = 2(p, + 1K) (B.17)
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APPENDIX C

Discussion and Use of Dimenslionless Parameters

The dimensionless parameters that enfer into the calcu-

lation of flutter boundaries and stress estimates are summarized
below together with a discussion on how to calculate dimensional
aquantities,

Specify
¢clamped.

Keb

(o]

yUb3
D.X
(o]

Ty ,T
X077 Yo
Ty Ty,

r

x> T

y

whether leading and trailing edges are pinned or

Note that
inverse cube of panel thickness for fixed in-plane loads
(see Eq. (1217))

M

u ® B

number of half waves iIn the spanwise mode shape
(see Appendix A)

degree of stringer restraint (see Appendix A) €p, €¢

vary between zerco and unity. For pinned stringers,
€p = %, €, = 0 and for clamped stringers, €y = o,
€ =

c .

Poisson ratios (orthotropic constants)

ratios of orthotropic elastic moduli to modulus in
the chordwise direction (see Eq. (1.5))

stiffness of elastic foundation ([Kel]* = 1b/ftZ/ft)

viscous damping constant ([vy] = 1b sec/ft3)

applied membrane stresses
nonlinear membrane stresses

Ty + Ty

1 1
all of the membrane stress coefficients vary as the

r +

0

< , respectively

r
o v, * %y

Mach number

structural damping coefficient
reduced frequency (uwb/U)
length-to-width ratio

*
For

[Ke] , read "dimensions of Ke"
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T = thickness-to~-width ratio
R, So = parameters that depend on panel material, altitude,
Mach number, and thickness
Sy sy = chordwise and spanwise dimensionless stresses
It is convenient to introduce three other parameters that
are related to R and So, namely,
o= PsT
P
~1/3
2 2y
A L]
- 2F i
“ L x J
where
E 1/2
X
8s = 2
P (1 - v2)
is the speed of longitudinal waves (sound) in the chordwise
direction in the panel material. The relationship between
L, 6, n, R, and So is given by the following formulae:
_R §5
B = % R =2 5 = U.So
1
R 53
6 = 5173 S, = 24
1
(2n s2)%3 o~ 73
3.\1/2 f~
M\ 12 T M

The dependence of each parameter on the basic physical
properties (material, altitude, Mach number, and thickness)
is given in Table C-1,
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Table C-1. basic Flutter Parameters

Dimensionless Material Altitude Speed Thickness
Parameter Pgr 2g Por 8y M 7 = h/b
R al2 a® 12M°2 772
S oo
-1, -2 2 2 -3
SO Pg 8y P8, 12M T
5 02/3,72/3 | ;-2/3,2/3 | ,"1/3y2/3 -
S S oo [>]
-1
b Ps P -= T
-1 -1

To obtain an explicit formula for any dimensionless parameter,
multiply out the dimensional parameters in the corresponding
row.

An important point is that any two of the five parameters
in Table C-1 may be used in place of R and S . A very
useful pair consists of the mass ratio parameter p and the
material altitude parameter 1n . The advantage of this
combination is that neither parameter depends on the Mach
number., Thus we can display the effects of Mach number change
on flutter boundaries for a given material and altitude; e.g.,

i versus s plots for fixed n and different M , Conversdy,
1 at fixed Mach number and calculate the effect

of a change in material or altitude. The

we can change
KL,n pair is used
exclusively in the present report,

The basic physical properties of various panel materials
are given in Table C-2a; the variation of n with altitude
for these materials is given in Table C-2b. These data are
needed to calculate dimensional quantities.
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Table C-Z2a. Material Properties at Sea Level

i ' : }
Material Specific Sound Speed Mo lps/pco '

; Gravity ft/sec 0

i Aluminum e.7 16,740 147.0 2200
Soft Steel 7.0 16,410 388.5 5700
Magnesium 1.8 15,100 106.2 1470
Nickel 8.5 16,320 478.0 6930
Copper 8.0 10,000 730.0 6515

Table C-2b, Variation of n with Altitude for
Various Panel Materials

A%gigude Aluminum {Soft Steel Magnesium; Nickel | Copper
"Sea Levell 147.0 388.5 106.2 478.0{ T730.0

5,000 167.8 huh o 121.3 544 01 833.0
10,000 192.5 509.0 139.2 625.0{ 955.0
20,000 256.0 677.0 185.0 831.0{ 1270.0
30,000 350.0 925.0 253.1 | 1136.0{ 1738.0
40,000 522.0 1380.0 378.0 | 1695.0 | 2590.0
50,000 845.0 2235.0 611.0 | 2741.01} 4195.0

For a given flutter point, the values of p and nq
are known. We now show how to calculate the panel thickness-
to-width ratio « . The first step is to prepare a graph of
the density ratio pw/Pmo and n versus altitude for the
panel material in question. The curves for aluminum panels
are given in Fig, C-1 between sea level and 50,000 ft. For
given 1 , find the corresponding altitude and value of
pw/pwb from the graph, Calculate thickness from the formula
. LU
T \ps ) (p“o) g
where o, /py is obtained from Table C-2a , and u is a
given flutter point.
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FIGURE C-1. CURVES FOR CONVERTING MASS RATIO u TO THICKNESS Tt FOR
ALUMINUM PANELS AT DIFFERENT ALTITUDE; ag = 16,7 40 £t/sec,

pg = 5- 23 slugs/ft
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